Delian problem - definição. O que é Delian problem. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Delian problem - definição

GEOMETRIC PROBLEM OF CONSTRUCTING A CUBE WITH TWICE THE VOLUME OF A GIVEN CUBE
Duplicating the cube; Delian problem; Duplication of the cube; Cube duplication; Doubling a cube; Doubing the cube; Doubling of the cube; Cube root of two; Doubling the Cube; Duplication of the Cube; Cube root of 2; Delian constant; ∛2; Double the cube; Duplicate the cube
  • A002580}}).
  • 300px

Knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
0/1 knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
<application> The knapsack problem restricted so that the number of each item is zero or one. (1995-03-13)
knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
<application, mathematics> Given a set of items, each with a cost and a value, determine the number of each item to include in a collection so that the total cost is less than some given cost and the total value is as large as possible. The 0/1 knapsack problem restricts the number of each items to zero or one. Such constraint satisfaction problems are often solved using dynamic programming. The general knapsack problem is NP-hard, and this has led to attempts to use it as the basis for public-key encryption systems. Several such attempts failed because the knapsack problems they produced were in fact solvable by polynomial-time algorithms. [Are there any trusted knapsack-based public-key cryptosystems?]. (1995-04-10)

Wikipédia

Doubling the cube

Doubling the cube, also known as the Delian problem, is an ancient: 9  geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools.

The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.

In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x3 = 2; in other words, x = 2 3 {\displaystyle {\sqrt[{3}]{2}}} , the cube root of two. This is because a cube of side length 1 has a volume of 13 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2. The impossibility of doubling the cube is therefore equivalent to the statement that 2 3 {\displaystyle {\sqrt[{3}]{2}}} is not a constructible number. This is a consequence of the fact that the coordinates of a new point constructed by a compass and straightedge are roots of polynomials over the field generated by the coordinates of previous points, of no greater degree than a quadratic. This implies that the degree of the field extension generated by a constructible point must be a power of 2. The field extension generated by 2 3 {\displaystyle {\sqrt[{3}]{2}}} , however, is of degree 3.